On the use of Hadamard expansions in hyperasymptotic evaluation of Laplace-type integrals—III: Clusters of saddle points

نویسنده

  • R. B. Paris
چکیده

It is shown how the recently developed Hadamard expansion procedure can be applied to the hyperasymptotic evaluation of Laplace-type integrals containing a large variable when the phase function has a cluster of close-lying saddle points. Themodification to this procedure that is requiredwhen the saddles in the cluster coalesce to form a single higher-order saddle is discussed.An example is also considered in which there is both a coalescence of saddles and a Stokes phenomenon as the phase of the large variable is allowed to vary. Numerical examples are given to illustrate the accuracy that can be obtained with this new procedure. © 2006 Elsevier B.V. All rights reserved. MSC: 30E15; 30E20; 41A60

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Generalizations of Hadamard Inequalities for Fractional Integrals

Fej'{e}r  Hadamard  inequality is generalization of Hadamard inequality. In this paper we prove certain Fej'{e}r  Hadamard  inequalities for $k$-fractional integrals. We deduce Fej'{e}r  Hadamard-type  inequalities for Riemann-Liouville fractional integrals. Also as special case Hadamard inequalities for $k$-fractional as well as fractional integrals are given.

متن کامل

Some new results using Hadamard fractional integral

Fractional calculus is the field of mathematical analysis which deals with the investigation and applications of integrals and derivatives of arbitrary order. The purpose of this work is to use Hadamard fractional integral to establish some new integral inequalities of Gruss type by using one or two parameters which ensues four main results . Furthermore, other integral inequalities of reverse ...

متن کامل

Asymptotic expansions of oscillatory integrals with complex phase

We consider saddle point integrals in d variables whose phase functions are neither real nor purely imaginary. Results analogous to those for Laplace (real phase) and Fourier (imaginary phase) integrals hold whenever the phase function is analytic and nondegenerate. These results generalize what is well known for integrals of Laplace and Fourier type. The proofs are via contour shifting in comp...

متن کامل

Nonharmonic Gabor Expansions

We consider Gabor systems generated by a Gaussian function and prove certain classical results of Paley and Wiener on nonharmonic Fourier series of complex exponentials for the Gabor expansion‎. ‎In particular, we prove a version of Plancherel-Po ́lya theorem for entire functions with finite order of growth and use the Hadamard factorization theorem to study regularity‎, ‎exactness and deficienc...

متن کامل

Two-point Taylor Expansions of Analytic Functions

In deriving uniform asymptotic expansions of a certain class of integrals one encounters the problem of expanding a function, that is analytic in some domain Ω of the complex plane, in two points. The first mention of the use of such expansions in asymptotics is given in [1], where Airy-type expansions are derived for integrals having two nearby (or coalescing) saddle points. This reference doe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007